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Incompatibility of 8auge Invariance 
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in Path Integral Formulation 
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It is shown that a modification of the usual gauge transformations is essential 
to the path integral formulation of nonrelativistic quantum mechanics as a 
consequence of defining the locality condition as follows: The contribution 
from each path comes entirely from the points on the path. Arguments are 
based on the similarity between Wiener and Feynman functional (path) 
integrals. 

KEY W O R D S :  Quantum mechanics; gauge invariance; path integral; 
stochastic integral. 

Whether  or not  a quan tum field theory is gauge-invariant  and local is an 
impor tant  and well-known question. There seems to be no contradict ion 
between these two requirements in field theory, nor  quan tum mechanics. I t  is 
therefore surprising to find that  in the path integral formulat ion o f  quan tum 
mechanics, (11 the situation may be different. More  precisely, the usual gauge 
t ransformations o f  the wave function, scalar, and vector potentials do no t  
leave invariant nonrelativistic quan tum mechanics,  where locality is defined 
by saying that  the contribution from each path comes entirely from the points 
on the path. This definition appears very natural in the path integral forma-  
lism, however,  as is explained below, it is more  restrictive than the usual 
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requirement that the potentials in the SchrSdinger equation depend only on 
x and t. 

The purpose of this note is to show the contradiction. Its origin is in the 
nondifferentiability of relevant paths in the Feynman (functional or path) 
integral. 2 A similar situation is known and well understood in the case of the 
Wiener integral in the theory of (real) continuous Markov processes. (2~ 
Unfortunately, the mathematical theory of diffusion with complex "probabi- 
lity" has not been sufficiently developed and the results from the real case do 
not easily carry over to quantum mechanics. It is therefore difficult to foresee 
how the contradiction can be resolved. It is even more difficult to make any 
positive conclusion about the same question in the path integral formulation 
of quantum field theory, because in this case, the analogy with the real 
Wiener process is much less direct. (3~ 

For simplicity, let us consider the SchrSdinger equation with scalar 
potential V(x ,  t). The time-dependent Green's function of the equation can be 
written as an integral 

K ( x z , q ,  x 2 , t 2 )  = fll exp r tz ~ t~ (1) 

where the index F denotes the Feynman functional integration (L~ over all 
continuous functions x~ of t with the initial and final values x~ 1 ~ xl and 
xt.~ ~ x~ , respectively, the functional 

= (i /h) f i~l  V ( x t , t ) d t  (2) 

clearly being anti-Hermitian, additive, and homogeneous. In the absence of 
an interaction, ~ ~ 0. Then, (1) becomes (1,3) 

K ( x l  , q ,  xz  , t2) = [m/2~rih(t2 - -  q)]~/2 

• exp[ im(x2  - -  xO2/2h(t2 - -  q)] (3) 

In the path integral formalism, the usual gauge invariance is "derived" 
in the following way. The equation 

dA(x, t) -- grad A(x, t)  d x  - - [aA(x ,  t ) /St]dt  = 0 (4) 

is integrated along a path xt between space-time points (xx, ta) and (x2, t2) 
and the result is added to (2). 

2 Among all continuous functions of time (paths) over which one integrates, there are so 
few differentiable ones that their contribution to the integral (1) is precisely zero. 
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One gets 

t 2 r = ( i /h)  Z(x2 , t~) - ( i /h)  z(Xl, t~) 

. { V ( x t ,  t )  - -  [Sf l (x t ,  t ) / s t ]}  dt  -k (i/h) t t  1 

gg2 

- -  (i/h) f grad fl(xt , t )  dx t  (5) 

The first two terms on the right can be brought outside the functional integral 
in (1) because they depend only on the initial and final points of the path x , .  
They are the exponents of the factors which occur in the initial and final wave 
functions after the gauge transformation. Similarly, one identifies the last two 
terms in (5) to be the corresponding transformations of the scalar and vector 
potentials. 

Our objection to the above derivation is based on two facts: 

1. The identity (4) is correct only for differentiable paths x t  �9 Because we 
want to insist on the path locality as defined above, we cannot assume any 
approximate smoothness of the paths. Therefore (4) has to be replaced by 
another relation. 

2. Analogy with real, continuous Markov processes. There, a similar 
(Wiener) integration is performed in the same space of all continuous func- 
tions x t .  Equation (4) is replaced there by a nontrivially different relation 
(tto stochastic differential) which can be integrated along any continuous 
path (Ref. 2, Chapter 7; Ref. 4). Added to a functional similar to (2), it 
generates gaugelike transformations of the solution of the (real) diffusion 
equation and its potentials which differ essentially from the usual gauge 
transformations of quantum mechanics. (5~ Because of the deep formal simi- 
larity between Wiener and Feynman integrals ~a) and because of the coinci- 
dence of their functional spaces, it is highly unlikely that the necessary 
modification of (4) will be a trivial one. Unfortunately, very little is known 
about the Ito differential for the complex case. 15) 

The present contradiction disappears in the classical limit. Indeed, the 
more classical our system is, the less important are all paths which differ from 
the classical trajectory, m In the limit, one is left with one differential path 
along which (4) and the complex Ito differential must coincide. 

Finally, there remain three alternatives. The present contradiction is due 
to restricted applicability of either (i) nonrelativistic quantum mechanics or 
(ii) the path integral formulation, or (iii) it is a fundamental one. 
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